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Abstract. One of the most useful measures of quality for graph clustering is the mod-
ularity of the partition, which measures the difference between the number of the edges
with endpoints in the same cluster and the expected number of such edges in a random
graph. In this paper we show that the problem of finding a partition maximizing the
modularity of a given graph G can be reduced to a minimum weighted cut problem
on a complete graph with the same vertices as G. We then show that the resulting
minimum cut problem can be efficiently solved by adapting existing graph partitioning
tools. Our algorithm is accurate and finds a graph clusterings much faster than alter-
native algorithms that produce a comparable clustering quality.
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1 Introduction

One way to analyze and understand the information contained in the huge amount of data
available on the WWW and the relationships between the individual items is to organize
them into ”communities,” maximal groups of related items. Determining the communities
is of great theoretical and practical importance since they correspond to entities such as
collaboration networks, online social networks, scientific publications or news stories on a
given topic, related commercial items, etc. Communities also arise in other types of networks
such as computer and communication networks (the Internet, ad-hoc networks) and biological
networks (protein interaction networks, genetic networks).

The problem of identifying communities in a network is usually modeled as a graph clus-
tering (GC) problem, where vertices correspond to individual items and edges describe rela-
tionships. Then the communities correspond to subgraphs with a lot of edges between vertices
belonging to the same subgraph (called in-cluster edges) and fewer edges between vertices
from different subgraphs (called between-cluster edges). The GC problem has been intensively
studied in the recent years in relation to its applications in the analysis of networks. Girvan
and Newman propose in [22], [42] algorithms based on the betweenness of the edges of a graph,
a characteristic that measures the number of the shortest paths in a graph that use any given
edge. In [32] Newman describes an algorithm based on a characteristic of clustering quality
called modularity, a measure that takes into account the number of in-cluster edges and the
expected number of such edges. (We formally define and discuss modularity in more detail in
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the next section.) A faster version of the algorithm from [32] was described by Clauset et al.
in [15]. Several algorithms have been proposed based on other techniques such as computing
eigenvectors of the graph Laplacian, e.g., [50], [39], [40], simulated annealing [45], [24], belief
propagation [25] and greedy methods [8]. In all previous cases the algorithms reported in the
literature are either not fast enough, or are inaccurate. The problem of finding a partition
that maximizes the modularity was shown to be NP-hard [13].

In this paper we will describe a new approach for GC that uses our newly discovered
relationship between the GC and the minimum weighted cut problems. The minimum weighted
cut (MWC) problem is, given a graph G = (V,E) with real weights on its edges, find a
partition of V such that the set of all edges of G that join vertices from different sets of the
partition, called a cut of the partition, is of minimum weight. GC looks related to the MWC
problems since, in a good quality clustering, the weight of the edges between different sets of
the partition (the cut) should be small compared to the weight of the edges inside the sets.
But the MWC problem can not be directly applied to solve the GC problem since it does
not take into account the sizes of the subgraphs induced by the cut (e.g., it is likely that the
minimum cut will consist of the edges incident to a single vertex). There are some minimum
cut based clustering algorithms, e.g., [20], that use maximum flow computations combined
with heuristics, but they are typically slower than modularity based algorithms, e.g. [15], and,
moreover, they cannot determine the optimal number of clusters and, instead, construct a
hierarchical decomposition of the set of all vertices of the graph.

In this paper we prove that the problem of finding a partition of a graph G that maximizes
the modularity can be reduced to the problem of finding a MWC of a weighted complete graph
on the same set of vertices as G. We then show that the resulting minimum cut problem can
be solved by modifying existing fast algorithms for graph partitioning. We demonstrate by
experiments that our algorithm has generally a better quality and is much faster than the
best existing GC algorithms.

2 Our clustering algorithm

2.1 Preliminaries

A graph G is an ordered pair (V (G), E(G)) of sets, where V (G) is the set of the vertices and
E(G) is the set of the edges of G and each edge is an unordered pair (v, w) of vertices. If E′ ⊆
E(G), then by G − E′ we denote the graph (V (G),
E(G) \ E′). A graph is bipartite, if E(G) ⊆ {(v1, v2) | v1 ∈ V1, v2 ∈ V2}, where V1 ∪ V2 = V
and V1∩V2 = ∅. A path p in G is a sequence (v1, . . . , vk) of vertices such that (vi, vi+1) ∈ E(G)
for 1 ≤ i < k. If v1 = vk, then p is a cycle. G is connected if there is a path between any
pair of vertices of G. The components of G are its maximal connected subgraphs. A partition
P of G is a division of V (G) into subsets V1, . . . , Vs such that Vi ∩ Vj = ∅ for i 6= j and⋃s
i=1 Vi = V (G). If s = 2, then P is a bisection. Note that, in contrast to other works, our

definitions of partition and bisection does not require the parts to be balanced in size. A
set C ⊆ E(G) is a cut of G if there exists a partition P of G such that C is the set of the
edges of G joining vertices from different sets of P. We will use the notation C = cut(P) and
P = part(C) and define cut(Vi, Vj) = {(t, u) ∈ E(G) | t ∈ Vi, u ∈ Vj}. Two partitions P1 and
P2 are equivalent, if cut(P1) = cut(P2). If there are weights wt(·) associated with the edges
of G, then by cutWt(P) = wt(C) we denote the sums of the weights of all edges in C. If M
is a finite set, by |M | we denote the number of the elements of M .

The following property follows directly from the definitions.

Lemma 1. An edge set C is a cut of G if and only if, for each (v, w) ∈ C, each path between
v and w contains an edge from C.
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Lemma 2. A partition P of G is equivalent to a bisection of G if and only if any cycle in G
contains an even number of edges from cut(P).

Proof. Let V1, . . . , Vk be the connected components of G−cut(P). Construct a graph G′ with
a vertex set V (G′) = {v1, . . . , vk} and edge between vi and vj , if there is an edge in cut(P)
joining a vertex from Vi with a vertex from Vj . Clearly, P is equivalent to a bisection if and
only if G′ is bipartite. Moreover, for each cycle in G with k edges from cut(P), there is a cycle
in G′ with k edges. The claim follows from the facts that a graph is bipartite if and only if
each of its cycles has an even number of edges. ut

2.2 Modularity optimization as a minimum cut problem

As there is no formal definition of clustering and what the clusters of a given graph are, in
general it is not possible to determine if a certain partition represents the ”correct” clustering
or which of two alternative partitions of a graph corresponds to a better clustering. For that
reason, researchers have used their intuition to define measures for cluster quality that can
be used for comparing different partitions of the same graph. One such measure, introduced
in [42, 37], which has received considerable attention recently, is the modularity of a graph.
Given an n-vertex m-edge graph G = (V (G), E(G)) and a partition P of V (G) into k subsets
(clusters) V1, . . . , Vk, the modularity Q(P, G, G) of P with respect to G (or Q(P) for short if
G and G are clear from the context) is a number between −1 and 1 defined as

Q(P) = Q(P, G, G) =
1
m

k∑
i=1

(|E(Vi)| − Ex(Vi,G)),

where E(Vi) is the set of all edges of G with endpoints in Vi and Ex(Vi,G) is the expected
number of such edges in a random graph with a vertex set Vi from a given random graph
distribution G on V (G). Q(P) measures the difference between the number of in-cluster edges
and the expected value of that number for P in a random (e.g., without cluster structure)
graph on the same vertex set. Larger values of Q(P) correspond to better clusterings.

Having the definition of Q(P), we can formulate the clustering problem as finding a par-
tition P = {V1 ∪ . . . ∪ Vk} of V (G) such that

k∑
i=1

( |E(Vi)| − Ex(Vi,G))→ max . (1)

Clearly

max
P
{

k∑
i=1

( |E(Vi)| − Ex(Vi,G) )} = −min
P
{ −

k∑
i=1

( |E(Vi)| − Ex(Vi,G) )}

= −min
P
{ (|E(G)| −

k∑
i=1

|E(Vi)| )− (|E(G)| −
k∑
i=1

Ex(Vi,G) )}.

Denote

ExCut(P, G, G)} = |E(G)| −
k∑
i=1

Ex(Vi,G) .

Intuitively, ExCut(P, G, G) is the expected value of |cut(P)| with respect to the random
graph class G, assuming the expected number of edges for G is |E(G)|. Then

max
P
{

k∑
i=1

( |E(Vi)| − Ex(Vi,G) )} =
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−min
P
{ |cut(P)| − ExCut(P, G, G)}.

Hence, instead of problem (1), one can address the problem of computing

argmin
P
{ |cut(P)| − ExCut(P, G, G)} . (2)

The last expression shows that we can solve (1) as a problem of finding a MWC in a
complete graph G′ with a vertex set V (G) and weight weight(i, j) on any edge (i, j) ∈ E(G′)
defined by

weight(i, j) =
{

1− pij , if (i, j) ∈ E(G)
−pij , if (i, j) 6∈ E(G), (3)

where pij is the probability that there is an edge between vertices i and j in a random graph
from the class G. Then, problem (1) is equivalent to the problem of computing

argmin
P′

{cutWt(P ′)} , (4)

where cutWt(P ′) denotes the weight of the cut of P ′.
We summarize these observations in the following theorem.

Theorem 1. The problem of finding a partition of a graph G = (V,E) that minimizes the
modularity can be reduced in O( |V |+ |E| ) time to the problem of finding a minimum weighted
cut in a complete graph G′ = (V,E′) with edge weights given by (3).

For the reduction time bound in Theorem 1 we assume that the edges of E′ \E are defined
implicitly. There are several choices for G that have been favored by various researchers. The
random graph model G(n, p) of Erdös-Renyi [18] defines n vertices and puts an edge between
each pair with probability p. Clearly, the expected number of edges of G(n, p) is

(
n
2

)
p. Hence,

for a graph with expected number of edges m

pij = p =
m(
n
2

) · (5)

One disadvantage of the G(n, p) model is that it fails to capture important features of
the real-world networks, in particular, the degree distribution. As has been recently observed
[6], many important types of networks like technological networks (the Internet, the WWW),
social networks (collaboration networks, online social networks), biological networks (protein
interactions) have degree distributions that follow a power law, e.g., the fraction of the vertices
that have degree k > 0 is roughly proportional to αk−λ for some constants α and λ > 0. Such
networks are called scale-free. In comparison, the degrees of a random graph from the G(n, p)
model follow a Poisson distribution, i.e., the probability that a given vertex has degree k is(
n
k

)
pk(1− p)n−k and the expected degree of each vertex is pn. Hence, the Erdös-Renyi model

may not be suitable as a choice for G when used for determining the community structure of
graphs of the above type.

One model that takes into account the degrees of the vertices is studied by Chung and Lu
in [14]. In that model, the probability that there is an edge between a vertex i and a vertex
j is

pij =
didj∑n
k=1 dk

, (6)

where d1, · · · , dn are positive reals corresponding to the degrees of the vertices such that
max1≤i≤n d

2
i <

∑n
i=1 di. (The last condition guarantees that such a graph exists if all numbers

di are integers and will be always satisfied if numbers di are chosen to be the degrees of G.)
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We will refer to that model as the Chung-Lu (CL) model. Clearly, in the CL model, the
expected degree of vertex i is di, compared with pn (i.e., independent on i) in the G(n, p)
model.

Note that for both of the above choices of G the expected number of edges for a graph in
G is |E(G)|.

In the next section we will describe an efficient method for finding a MWC of a complete
graph G′ with weights on the edges satisfying (3) and pij defined by (5) or (6).

2.3 Finding a MWC using multilevel graph partitioning

Above we established an important relationship between the modularity optimization and the
MWC problems, i.e., that the problem of finding a partition of a given graph that maximizes
the modularity can be reduced to the problem of finding a minimum weight cut. Most existing
work on the MWC problem considers the case where all weights are non-negative. The MWC
problem in the case of non-negative weights is known to be polynomially solvable, e.g., by
using algorithms for computing maximum flows [2]. In contrast, the MWC problem in case of
real-value weights is NP-hard and algorithmic aspects of the problem are much less studied.
Here we show that available heuristics for another related problem, graph partitioning, can
be adapted to solve this version of the MWC problem.

Overview of the multilevel graph partitioning. Formally, the graph partitioning (GP)
problem is, given a graph G = (V,E), to find a partition (V1, V2) of V such that ||V1| −
|V2|| ≤ 1 (i.e., the partition is balanced) and cut(V1, V2) is minimum. (Some versions of the
problem consider partitions into an arbitrary number of parts.) Hence, in comparison with the
minimum cut problem, there is the additional requirement for a balanced partition. Because
of its important applications, e.g., in high performance computing and VLSI design, GP is
a well-researched problem for which very efficient methods have been developed. One such
approach is the multilevel GP. This method is both fast and accurate for a wide class of graphs
that appear in practical applications. Inspired by the multigrid method from computational
mathematics, it has been used in the works of Barnard and Simon [7], Hendrickson and Leland
[26], Karypis and Kumar [27, 28], and others. The method for bisecting a graph consists of
the following three phases(Figure 1):

Coarsening phase. The original graph G is coarsened by partitioning it into connected
subgraphs, replacing each of the subgraphs by a single vertex, and replacing the set of the
edges between any pair of shrunk subgraphs by a single edge. Moreover, a weight of each
new vertex (respectively edge) is assigned equal to the sum of the weights of the vertices
(respectively edges) that it represents. Weights on the original vertices of G are defined 1, in
the case of the G(n, p) model, or their degrees, in the case of the the CL model, as justified in
Corollary 1 below. (The coarsening procedure, including alternative methods for determining
the set of the shrunk subgraphs and analysis of their effect on the quality of the final partition,
is described in much detail in [28].) The resulting graph is coarsened repeatedly by the same
procedure until one gets a graph of a sufficiently small size. Let G0 = G,G1, . . . , Gl be the
resulting graph sequence.
Partitioning phase. The graph Gl is partitioned into two parts using any available partitioning
method (e.g., spectral partitioning or the Kernighan-Lin (KL) algorithm [29]).

Uncoarsening and refinement phase. The partition of Gl is projected on Gl−1. Since the
weight of each vertex of Gl is a sum of the weights of the corresponding vertices of Gl−1, then
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Fig. 1. The stages of multilevel partitioning.

the partition of Gl−1 will be balanced if the partition of Gl is and the cut of both partitions
will have the same weight. However, since Gl−1 has more vertices than Gl, it has more degrees
of freedom and, therefore, it is possible to refine the partition of Gl−1 in order to reduce its
cut size. To this end, the projection of the partition of Gl is followed by a refinement phase,
which is usually based on the KL algorithm. In the same way, the resulted partition of Gl−1

is converted into a partition of Gl−2 and refined, and so on until a partition of G0 is found.

Kernighan-Lin refinement. Since the refinement step is the most involved part of the
algorithm, which ultimately determines its accuracy and efficiency, we will describe it in more
detail. It has been shown [28] that the KL algorithm can be a good choice for performing the
refinement.

The KL algorithm involves several iterations, each consisting of moving a vertex from one
set of the partition to the other. Let P = {P1, P2} be the current partition. For each vertex
u of the graph a gain for u is defined as

gain(u) =
∑

v∈N(u)\P (u)

weight(u, v)−
∑

v∈N(u)∩P (u)

weight(u, v), (7)

where N(u) is the set of all neighbors of u and P (u) is that set of P that contains u. gain(u)
measures how the weight of the cut will be affected if u is moved from P (u) to the other set
of P. The KL algorithm then selects a vertex w from the larger set of the partition with a
maximum gain, moves it to the other set, and updates the gains of the vertices adjacent to w.
Moreover, w is marked so that it will not be moved again during that refinement step. The
process is continued until either all vertices have been moved, or the S most recent moves
have not led to a better partition. (S is a user chosen parameter that is set to 50 in the
current implementation.) At the end of the refinement step, the last s ≤ S moves that have
not improved the partition are reversed.

Implementation The implementation of our algorithm for clustering is based on the version
of multilevel partitioning implemented by Karypis and Kumar [27, 28], which has been made
freely available as a software package under the name METIS. Note that graph partition-
ing, minimum cut, and clustering are related, but with important differences, problems, as
illustrated in Table 1. We have already shown how the clustering problem can be reduced
to a minimum cut problem and here we will show how the resulting minimum cut problem
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can be solved by a graph partitioning algorithm based on METIS. Because of the differences
between graph partitioning and MWC, we have to make some evident changes. For instance,
since graph partitioning requires balanced partitions, we have to drop the requirement for
balance of the partition. We have also to determine the cardinality of the partition that
minimizes the cut size. But the main implementation difficulty is related to the size of G′.
Although the original graph, G, is often sparse, i.e., it has n vertices and O(n) edges, the
transformed one, G′, is always dense, as it has

(
n
2

)
= Ω(n2) edges. The main challenge will be

to construct an algorithm whose complexity is close to linear on the size of the original graph,
rather than on the size of the transformed one. Next we show that it is possible to simulate
an execution of a KL refinement step on G′ by explicitly maintaining information only about
the edges from the original graph G and implicitly taking into account the remaining edges
by modifying the formulae for computing weights and gains.

In order to give intuition about why this works, assume that the edges of G′ belong to
two types that we call visible and invisible. The visible edges correspond to the edges of the
original graph G and are therefore few (assuming G is sparse). These edges carry weight 1
and are maintained explicitly. The invisible edges are between any two vertices of G′. (Note
that for each visible edge there is also an invisible one parallel to it, i.e., joining the same
endpoints.) The weight of invisible edge (i, j) is −pij . Although the number of invisible edges
is Ω(n2), because of their uniform distribution, the contribution of these edges to the cut
is easy to compute by maintaining additional information of size O(1) only. The next two
lemmas formalize this notion.

Problem Modularity optimization Minimum Cut Graph Partitioning

Objective Maximize modularity Minimize cut size Minimize cut size

Balance of partition Sizes may differ Sizes may differ Equal sizes

Cardinality of partition To be computed To be computed An input parameter

Table 1. Comparison between modularity optimization, minimum cut, and graph partitioning prob-
lems.

Lemma 3. Let P = {V1, V2} be a partition of G and let G′ be the transformed weighted graph
with respect to the G(n, p) random graph model. Let P ′ be the cut in G′ corresponding to P.
Then

cutWt(P ′) = cutWt(P)− |V1| |V2|p ,
where p = m/

(
n
2

)
.

Proof. Follows from formulae (3) and (5). There is an edge in G′ joining any vertex from V1

with any vertex in V2. For an edge from G the corresponding weight is 1− p, and an edge in
G′ not in G the corresponding weight is −p. ut

The lemma shows that if one maintains the values of |V1| and |V2| during a KL refinement,
one can work with the original graph G rather than with the modified G′, updating at each
step the value of the cut in O(1) time using Lemma 3.

A similar formula holds for the case of the CL model.

Lemma 4. Let P = {V1, V2} be a partition of G and let G′ be the corresponding weighted
graph with respect to the CL random graph model. Assign a weight wt(v) to each vertex v
equal to its degree. Let P ′ be the cut in G′ corresponding to P. Then

cutWt(P ′) = cutWt(P)− wt(V1)wt(V2)p , (8)
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where wt(Vi) =
∑
v∈Vi

wt(v) and p =
(∑

v∈V (G) wt(v)
)−1

.

Proof. Follows from formulae (3) and (6) and the equality∑
v∈V1

∑
w∈V2

wt(v)wt(w)
p

=

(∑
v∈V1

wt(v)

)(∑
w∈V2

wt(w)

)
/p .

ut

According to the lemma, the cut weight of P ′ can be computed in O(1) time given the cut
weight of P, if one maintains the values of the weights of V1 and V2 during the KL refinement.

In the case of both the G(n, p) and the CL random graph models, for moving a vertex
v from one partition to another during a KL refinement we need only to update the gains
of the neighbors of v in G. Having those gains, one can maintain cutWt(P) in total time
proportional to the size of G, excluding the time for priority queue operations needed to
extract vertices with maximum gains, which is O(n log n) in total. By Lemma 3 or Lemma 4,
one can at any time compute cutWt(P ′) from cutWt(P) and the weights of the partitions in
O(1) additional time.

From Lemma 3 and Lemma 4 it follows that in the case of both models the same KL
refinement algorithm can be used, if the vertex weights are appropriately defined.

Corollary 1. Let P = {V1, V2} be a partition of G and let G′ be the corresponding weighted
graph with respect to either the G(n, p) or the CL random graph model. Define the weight of
any vertex v to be 1, in the case of the G(n, p) model, or the degree of v, in the case of the
CL model. Then cutWt(P ′) can be computed by formula (8).

Time analysis. By using the analysis of Fiduccia and Mattheyses of the KL algorithm from
[19], it follows that clustering any network of n vertices and m edges into two communities
by our algorithm takes O(n log n + m) time, where n and m are the numbers of the nodes
and links of the network, respectively. Finding a clustering in optimal number of k parts,
our algorithm first divides to 2 parts, then to 22 = 4 parts, then to 23 = 8 parts, .... and so
on. Finding a clustering in optimal number of k parts takes O((n log n+m)d) time, where d
is the depth of the dendrogram describing the clustering hierarchy. Since the dendrogram is
represented by a binary tree, log2 k ≤ d ≤ log2 k + 1.

3 Experiments and performance evaluation

We present two type of experimental results. The first type, described in Section 3.1, compares
our algorithm with other well known algorithms, testing its speed and accuracy. The second
type, described in Section 3.2, presents the results of our algorithm when applied to graphs
from the DIMACS Challenge testbed.

3.1 Comparison against other clustering algorithms

We performed a number of experiments on randomly generated graphs, in order to measure the
accuracy of our algorithm and its efficiency as well as to compare it with previous algorithms.
First we present the results of an experiment measuring the algorithm accuracy, the so called
Newman-Girvan test. We include this test as an example of non-modularity based accuracy
test and because of its popularity. Its disadvantages are that it uses graphs of very special
structure and of relatively small sizes. That is why we concentrate most of our effort and
describe in most detail the results of another type of experiments, included in the third
subsection, that use graphs of different size and structures, and on which we are able to test
both the speed and the accuracy of our algorithm versus several others. In all experiments
the CL version of our algorithm was used.
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Newman-Girvan accuracy test Following the experimental setting of [42], we generated
random graphs with 128 vertices and 4 communities of size 32 each. The expected degree of
any vertex is 16, but the expected outdegree (the expected number of neighbors of a vertex
that belong to a different community) is set to i in the i-th experiment (i ≤ 16). Hence, higher
values of i correspond to graphs with weaker cluster structures. The experiment is intended
to measure the sensitivity of the algorithm to the strength of the communities.

In order to decide whether to include an edge (v, w) in the graph in the i-the experiment,
a random number r in the interval [0, 1] is generated and (v, w) is accepted if r ≥ i/31 and
v and w belong to the same community or r ≥ (16 − i)/96 and v and w belong to different
communities, and is rejected otherwise.

Outdegree Degree Newman-Girvan Ours

1 16 1.00 1.00

2 16 1.00 1.00

3 16 0.98 1.00

4 16 0.97 1.00

5 16 0.95 1.00

6 16 0.85 0.99

7 16 0.60 0.95

8 16 0.30 0.79

Table 2. Comparing the quality of the clustering of our algorithm and Newman-Girvan’s algorithm.

Table 2 compares the quality of the clusterings produced by Newman-Girvan’s algorithm
and ours. A clustering produced by any of the algorithms is considered ”correct” if it matches
the original partition of communities from the graph generation phase. (Note that, due to
the probabilistic nature of the graphs, the clustering that maximizes the modularity might
be different from the original partition, especially if the modularity is low.)

Our algorithm classifies correctly more than 99% of the edges for outdegrees 0, 1, 2, 3, 4, 5, 6
and in all cases it is better than Newman-Girvan’s (more than twice better for the case
outdegree=8).

Testing both speed and accuracy Table 3 compares the performance of our algorithm
with four other algorithms that are considered among the best with respect to their speeds
and/or accuracies. Clauset, Newman, and Moore’s algorithm [15] is an agglomerative algo-
rithm that is an improvement of a previous algorithm [32] in terms of the speed and is claimed
to have the same quality of the partition. Agglomerative algorithms start with a community
partition, where each single vertex represents a community. At each iteration a pair of com-
munities are merged into a single one such that a measure of cluster quality, in this case
the modularity, is improved. The second algorithm is Newman’s algorithm described in [40],
which is a spectral algorithm based on eigenvector computations. The other two algorithms, of
Guimera and Amaral [24] and Reichardt and Bornholdt [45], are based on simulated annealing
optimization.

Most of the algorithms tested, notably Guimera-Amaral and Reichardt-Bornholdt algo-
rithms, have parameters that can be played with in order to improve the accuracy of the
algorithms on particular graphs. It is possible that by varying the parameters from exper-
iment to experiment and from graph to graph, the quality of some partitions would have
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improved. Our algorithm also has parameters that allow trading off speed for accuracy. How-
ever, such type of optimization and fine-tuning of the algorithms is beyond the scope of this
paper. In all experiments, we have used the recommended or default values of all parameters.

The test graphs in our experiments are random graphs with varying numbers of clusters,
sizes, densities, and modularities. The graphs are generated by initially assigning a set of
isolated vertices into a number of clusters with preset sizes. Then, for each pair of vertices v
and w, an edge (v, w) is generated with probability pin, if v and w belong to the same cluster,
and with probability pout, otherwise, where pin and pout are input parameters. Experiment 1–
10 have been run 100 times on different random graphs and experiments 11–13 have been run
10 times. All experiments have been run on an Intel Xeon CPU 1.60GHz processor desktop
computer with 4G of memory.

For each experiment, the table shows the number of the vertices and the average number of
edges of the test graph, the number of the clusters in the original partition during generation,
and the average modularity of that partition. Then, for each of the algorithms, the average
running time and modularity of the partition are listed.

Experiments 1–4 study how the performance of the algorithms depends on the number of
clusters, which vary from 2 to 9. The results indicate that the qualities of the clusterings are
comparable, while Newman’s (N) and Guimera-Amaral’s (GA) algorithms time performance
is more sensitive to the number of the clusters.

In experiments 5–7, the test graphs have the same numbers of vertices, numbers of cluster,
and modularities, but different densities. All algorithms were quite accurate and showed little
variance in their performance when sparsity changes.

In experiments 8–10, we compare the algorithms when the modularity (the quality of the
original clustering) is low. In these experiments, the Clauset, Newman, and Moore’s (CNM)
algorithm considerably underperformed the other four with respect to the quality of the
partition.

Finally, in experiments 11-13, we compared the scalability of the algorithms. Because of the
low scalability of some algorithms and the long time it takes to run a single experiment, those
experiments were run only 10 times. As such, small differences in the modularity should be
taken with caution, and attention should be paid to the running times, which vary significantly
from algorithm to algorithm. The experiments show that the GA algorithm is the slowest,
followed by the other simulated annealing based Reichardt and Bornholdt’s (RB) algorithm,
which is about 4 times faster. Neither of these two algorithms can be used in reasonable time
for graphs containing more than a few hundred thousand edges. Algorithm N is much faster
than those two and can be used for graphs of size several million edges. The only algorithm
that can scale to graphs of sizes up to tens of millions of edges is the CNM algorithm, but it
is also the least accurate of all, as seen in the sensitivity tests (experiments 8–10). Yet, our
algorithm is about 30 times faster than the CNM algorithm.

In the Appendix we present some more details of the experiment. Figures 2 and 3 show
the distribution of the degrees of the vertices for each of the experiments. The in-degree of a
vertex in those tables is defined here as the number of the adjacent vertices from the same
cluster as defined during the generation process and the out-degree as the number of adjacent
vertices from a different partition. One would expect that the support interval (the interval
where the density function is positive) for the in-degrees will always be greater than (to the
right of) the one for the out-degrees, in order to have well defined community structures, but
this is not always the case. When the number of the communities is large (as in experiment
4), it is possible for the out-degrees of vertices to exceed their in-degrees, while the average
number of neighbors to any fixed neighboring community to be still lower than the in-degree.
In experiments 8, 9, and 10, this effect is further amplified by the low modularity of the
partitions, which translates into weaker community structures.
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Since Table 3 shows only averages, we give on Figures4 and 5 the distribution of the
modularities for each algorithm and each experiment, represented as differences between the
modularities of our algorithm and those of the other algorithms. Those figures show that in
experiments 1 through 8 our algorithm not only produces equal or better quality clusterings
on average, but virtually on any single graph in those tests. The only experiments where the
quality is worse in some instances, in spite of the good quality of our algorithm on average,
are experiments 9 and 10, where the modularity is very low – 0.123 and 0.081, respectively.
Algorithm N performs the best in those experiments, which shows that it can be a good
alternative to our algorithm in low to moderate size graphs (up to 4-5 million edges).

In summary, in those experiments our algorithm produced partitions of quality comparable
to the most accurate existing algorithms, in times orders of magnitude smaller. Ours is the
only one of the tested algorithms that can produce high quality clusterings on graph of sizes
exceeding several million edges.

3.2 Testing on DIMACS Testbed graphs

We ran our algorithm on the Co-author and Citation Networks and the Clustering Instances
datasets of the DIMACS Challenge testbed. Each file was preprocessed in order to convert it
from the Metis format to our Metis-like format. The difference is in the weights of the nodes.
In order to use the CL model modularity, which is the type of modularity chosen for this
Challenge, each node of the network should have a weight equal to the sum of the weights
of its adjacent nodes. In case the graph is unweighted, i.e., all weight are one, the weight
becomes the degree of the node. This has been done in order to have the same algorithm
handle without change both cases of the CL and the Erdös-Renyi models, the difference
being only in the definition of node weights in the input file. The two graphs that we have
not processed are uk-2002.graph and uk-2007-05.graph of the Clustering Instances dataset.
Because of their large size, they could not fit in the memory of the computer that we ran the
experiments on.

The graphs from the Citation Networks dataset were originally used in [46] and the graphs
from the Clustering Instances dataset were used in [47], [3], [5], [10], [12], [11], [49], [1], [38],
[30], [35], [21], [31], [34], [17], [36], [48], [33], [43], [41], [9], [23], [16], [44], and [4].

4 Conclusion

This paper proposes a new approach for modularity optimization by reducing it to a minimum
cut problem and then solving the latter problem by applying methods for graph partitioning.
Our proof-of-concept implementation, based on the METIS partitioning package, demon-
strated the practicality of the approach. The changes we made to METIS were relatively
small and various improvements and refinements that take into account the specifics of the
clustering problem, use alternative minimum cut or graph partitioning algorithms, or apply
heuristics and parameter adjustments in order to improve the accuracy are possible and will
be topics of further research.
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Exp # vert. # edges # clust Qorig
QCNM QN QGA QRB Qhere

tCNM tN tGA tRB there

#
co

m
m

u
n
it

ie
s

1 200 8934 2 0.388
0.387 0.388 0.387 0.386 0.388

1.15 0.70 88.45 35.55 0.07

2 400 21811 4 0.476
0.474 0.476 0.472 0.473 0.476

2.45 3.35 335.50 102.40 0.15

3 600 38743 6 0.447
0.445 0.447 0.445 0.445 0.447

4.15 9.95 928.20 189.95 0.30

4 900 71654 9 0.386
0.370 0.386 0.385 0.384 0.386

7.85 23.05 2539.15 388.25 0.50

sp
a
rs

it
y

5 200 9919 2 0.298
0.296 0.298 0.296 0.296 0.298

1.05 0.65 98.60 38.70 0.10

6 200 4958 2 0.299
0.297 0.299 0.297 0.297 0.299

0.95 0.30 37.85 21.25 0.05

7 200 2483 2 0.300
0.299 0.300 0.300 0.299 0.300

0.95 0.40 27.50 22.40 0.05

se
n
si

ti
v
it

y

8 400 38783 4 0.209
0.206 0.209 0.208 0.208 0.209

3.00 3.40 716.65 184.80 0.10

9 400 47775 4 0.123
0.113 0.123 0.122 0.122 0.122

3.45 3.30 819.90 229.85 0.05

10 400 53864 4 0.081
0.060 0.081 0.081 0.080 0.081

3.50 3.80 1242.90 248.15 0.35

sc
a
la

b
il
it

y

11 1000 174990 2 0.357
0.357 0.357 0.356 0.358 0.357

10.33 17.00 15808.67 1333.67 0.47

12 5000 3749007 2 0.333
0.332 0.333 – 0.333 0.333

329.50 2973.00 – 53119.50 8.00

13 20000 24995617 2 0.300
0.297 0.300 – – 0.300

2199.33 18234.67 – – 76.33

Table 3. Comparing the scalability of our algorithm with the algorithms of Clauset, Newman, and
Moore (CNM) [15], Newman (N) [40], Guimera and Amaral (GA) [24], and Reichardt and Bornholdt
(RB) [45]. Time is measured in seconds and QX and tX denote the average modularity and the
average time for algorithm X.

Experiment # clusters Modularity # vertices # edges Run Time (Sec)

coPapersDBLP 124 0.833225 540486 15245729 70.158

coPapersCiteseer 127 0.897382 434102 16036720 61.033

coAuthorsCiteseer 118 0.884720 227320 814134 7.875

CitationCiteseer 55 0.793215 268495 1156647 16.156

CoAuthorsDBLP 104 0.808873 299067 977676 12.187

Table 4. Citation Networks
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Experiment # clusters Modularity # vertices # edges Run Time (Sec)

adjnoun 6 0.293686 112 425 0.015

as-22july06 33 0.644198 22963 48436 1.546

astro-ph 31 0.716611 16706 121251 0.515

celegans-metabolic 6 0.423146 453 2025 0.000

cnr-2000 25 0.894582 325557 2738969 104.487

cond-mat 59 0.831337 16726 47594 0.390

cond-mat-2003 31 0.750067 31163 120029 0.750

cond-mat-2005 52 0.718460 40421 175691 1.312

dolphins 4 0.526799 62 159 0.000

email 8 0.568339 1133 5451 0.031

football 10 0.600912 115 613 0.015

hep-th 59 0.835649 8361 15751 0.203

jazz 3 0.444469 198 2742 0.015

karate 3 0.402038 34 78 0.000

PGPgiantcompo 56 0.875764 10680 24316 0.234

polblogs 4 0.425972 1490 16715 0.046

polbooks 5 0.523920 105 441 0.015

power 31 0.932475 4941 6594 0.093

caidaRouterLevel 56 0.847032 192244 609066 6.047

celegansneural 7 0.480297 297 2148 0.015

chesapeake 3 0.254654 39 170 0.000

eu-2005 78 0.928244 862664 16138468 130.769

G-n-pin-pout 4 0.380990 100000 501198 3.093

in2004 62 0.968524 1382908 13591473 260.945

lesmis 6 0.565822 77 254 0.000

preferentialAttachment 4 0.280632 100000 499985 2.578

smallWorld 478 0.747160 100000 499998 4.765

Table 5. Clustering Instances
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Fig. 2. Distribution of the degrees for experiments 1 through 7. The horizontal axis gives the degree
and the vertical the number of the vertices with that degree.
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Fig. 3. Distribution of the degrees for experiments 8 through 13. The horizontal axis gives the degree
and the vertical the number of the vertices with that degree.
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Fig. 4. Distribution of the modularities produced by each algorithm in experiments 1–6. The x-axis
gives the difference between the modularities of our algorithm and each of the other algorithms and
the y-axis gives the frequency as a percentage of the total number of runs.
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Fig. 5. Distribution of the modularities produced by each algorithm in experiments 7–10. The nota-
tion is the same as in Figure 4.
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